

Real-World Applications of Secured Blockchain in Smart Cities Transforming Urban Infrastructure through IoT

Dr. A. Sheela Devi Arunachalam, K Vijay Sankar
KARPAGA VINAYAGA COLLEGE OF ENGINEERING AND
TECHNOLOGY, SRI RANGANATHAR INSTITUTE OF ENGINEERING
AND TECHNOLOGY

Real-World Applications of Secured Blockchain in Smart Cities Transforming Urban Infrastructure through IoT

Dr. A. Sheela Devi Arunachalam, Professor, Department of Biotechnology, Karpaga Vinayaga College Of Engineering And Technology, Chinna Kolambakkam, Palayanoor (Po), Chengalpattu (Dt) 603 308, Madhuranthagam (Tk), sheeladevi.kvcet@gmail.com

K Vijay Sankar, Assistant Professor, Department of Civil Engineering, Sri Ranganathar Institute of Engineering and Technology, Coimbatore, India, sankarvijay1997@gmail.com

Abstract

Blockchain technology offers transformative potential for urban governance and civic services by enhancing transparency, efficiency, and security. This chapter explores the application of blockchain in smart cities, focusing on key sectors such as public records management, waste management, energy systems, and transportation. Through its decentralized, immutable, and transparent characteristics, blockchain ensures the authenticity of public documents, facilitates secure data sharing, and improves accountability across city infrastructure. Key applications include blockchain for managing personalized healthcare data, optimizing energy consumption in smart grids, improving the efficiency of digital toll systems, and enabling citizen participation in waste management. Additionally, blockchain supports seamless interaction between various stakeholders, fostering collaboration across government departments and private entities. The chapter highlights the potential of blockchain to address challenges such as fraud, inefficiency, and lack of trust, while offering insights into future directions for research and development in this rapidly evolving field.

Keywords:

Blockchain, Smart Cities, Public Records, Waste Management, Energy Systems, Civic Services

Introduction

Blockchain technology has garnered significant attention across various sectors due to its ability to provide decentralized, secure, and transparent solutions to complex challenges [1,2]. In the context of urban governance, blockchain offers unprecedented opportunities to enhance the management of civic services and improve the quality of life for residents in smart cities [3,4]. As urban populations continue to grow, cities are faced with the increasing demand for efficient, transparent, and sustainable infrastructure that can handle vast amounts of data and ensure equitable services [5-7]. Blockchain's immutable ledger, decentralized nature, and ability to facilitate peer-to-peer transactions without intermediaries provide a robust framework for addressing these challenges [8,9]. By enabling secure and efficient data management, blockchain has the potential to transform the way cities operate, allowing for enhanced accountability, transparency, and citizen engagement in urban governance [10,11].

In particular, blockchain can significantly improve the management of public records and documentation [12]. Traditional methods of storing and handling public records often involve centralized databases that are prone to errors, inefficiencies, and fraud [13-16]. Blockchain technology offers a secure, tamper-proof platform for recording and storing public data, ensuring its authenticity and accessibility [17]. Through the use of smart contracts and cryptographic security measures, blockchain allows for the transparent tracking of data and transactions, reducing the risk of corruption and administrative inefficiencies [18]. This approach was particularly valuable for managing vital documents such as property deeds, birth certificates, and legal contracts, which require accurate and reliable records [19]. The ability to guarantee the authenticity of public records was a key benefit of blockchain technology, which fosters trust in civic services and improves the overall governance framework [20-22].

Energy management was another key area where blockchain can drive significant improvements in smart cities. The increasing integration of renewable energy sources and the growing demand for energy-efficient systems pose challenges for traditional grids [23]. Blockchain technology can be leveraged to optimize energy distribution and improve real-time monitoring in smart grids [24]. By using blockchain, cities can create decentralized energy markets where consumers and producers can directly exchange energy without the need for intermediaries [25]. This peer-to-peer energy trading system promotes efficiency and ensures fair distribution of energy resources. Additionally, blockchain enables secure and transparent tracking of energy usage and carbon emissions, contributing to more sustainable and eco-conscious energy consumption patterns. With blockchain, the management of energy resources becomes more efficient, cost-effective, and environmentally friendly, aligning with the goals of smart cities to create sustainable, low-carbon urban environments.